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SUMMARY

We present the mathematical development and numerical solution of a new model of �ow processes
on an in�ltrating hillslope. We also present validation and sample applications. The model is a dis-
tributed, mechanistic, physically based hillslope hydrologic model. The model describes the small-scale
processes associated with overland �ow, erosion, and sediment transport on an in�ltrating surface and is
capable of capturing small-scale variations in �ow depth, �ow velocities, interactive in�ltration, erosion
rates, and sediment transport. The model couples the fully two-dimensional hydrodynamic equations
for overland �ow, the one-dimensional Richards equation for in�ltration, and a sediment detachment
and transport model. Two simulations are presented highlighting the model’s ability to capture and de-
scribe the interaction between precipitation, overland �ow, erosion and in�ltration at very small scales.
Results of the two-dimensional simulations indicate the system of equations produces hillslopes pos-
sessing characteristics of self-organization as observed in real world systems. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Hydrologists only are constantly faced with problems involving predictions of rainfall-runo�
response and sediment production. These problems occur at all scales from point to conti-
nental scales. Predictions are often made using lumped hydrologic models, which have tra-
ditionally made kinematic wave assumptions. Models based on the governing equations of
hillslope hydrology and hydraulics are necessary to fully explain the �ne scale processes and
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mechanisms active on hillslopes during precipitation. As knowledge of the small-scale varia-
tions in soil properties, topography, �ow-depths and velocities increases, modellers have begun
to use more complex models to describe these processes and associated interactions. Fiedler
and Ram��rez [1] developed a 2-D, fully hydrodynamic, mathematical model for simulating the
small-scale processes associated with overland �ow on an in�ltrating surface. Their model is
capable of capturing the small-scale variations in �ow-depth and velocities and of simulating
interactive in�ltration. Brie�y, the model of Fiedler and Ram��rez uses the full hydrodynamic
equations (the St. Venant equations in two dimensions) with spatially variable in�ltration char-
acteristics and explicit representation of micro topographic features. The hydrodynamic equa-
tions are solved using a modi�ed version of the explicit, second-order accurate MacCormack
�nite di�erence scheme, with special provisions for small �ow depths and a spatially and tem-
porally discontinuous �ow regime. In�ltration is modelled with the well-known Green–Ampt
equation [2], a good but approximate description of in�ltration, which is solved using a stan-
dard Newton–Raphson technique.
This paper presents the mathematical development of a new model for hillslope hydrological

processes that is largely based on the mathematical model and numerical scheme presented
by Fiedler and Ram��rez [1]. However, as opposed to the Green–Ampt equation, the new
model couples the Richards equation for one-dimensional in�ltration to the overland �ow
equations. The Richards equation is applicable to a wide variety of situations and is easily
applied to multi-storm scenarios. The new model also couples a physically based sediment
detachment and transport component, which allows examination of the interactions between
overland �ow, in�ltration and sediment detachment and transport. Model numerical results are
compared to analytical solutions, and a comparison is made also between a numerical and a
physical experiment. Results for a series of two-dimensional simulations are also presented
and examined with respect to hillslope evolution and energy expenditure.

2. MATHEMATICAL FORMULATION

2.1. Overland �ow

The overland �ow component of the new model is a 2-D, fully hydrodynamic, mathematical
description of the small-scale processes associated with overland �ow on an in�ltrating sur-
face and is based on the model of Fiedler and Ram��rez [1]. This model allows for explicit
representation of micro-topographic features and spatially variable in�ltration characteristics.
The hydrodynamic equations for overland �ow in two dimensions are:

@h
@t
+

@(uh)
@x

+
@(vh)
@y

− ql = 0 (1)
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@(vh)
@t

+
@(v2h)
@y

+
@(uvh)

@x
+ g

@(h2=2)
@y

− gh(Soy − Sfy)−
lateral︷︸︸︷
vql = 0 (3)

where h [L] is �ow depth, u and v are velocities [L/T] in the x and y directions, respectively,
So is bed slope [L=L] and Sf is energy grade line slope (or friction slope) [L=L], and ql is
lateral �ux [L2=T] through the control boundary and is equal to the di�erence between pre-
cipitation and in�ltration. It has been shown that the kinematic wave approximation is only
appropriate in very small regions of hydraulic roughness and Froude numbers and that the
di�usive and quasi-steady dynamic wave approximations are not appropriate for supercritical
overland �ow [3]. It is therefore desirable to implement the full dynamic-wave form of the
momentum equations for an accurate representation of spatially and temporally variable over-
land �ow. The bed slopes, Sox and Soy are computed directly from ground surface elevations,
z, as

Sox= − @z
@x

and Soy= − @z
@y

(4)

respectively. The Darcy–Weisbach (D–W) formula is used to compute the friction slopes, Sfx
and Sfy as

Sfx=
f
8g

p
√
(p2 + q2)
h3

and Sfy=
f
8g

q
√
(p2 + q2)
h3

(5)

respectively, where p and q are �uxes [L2=T] in the x and y directions, respectively. The
value f is the D–W friction factor and, assuming that the overland �ow regime is laminar [4],
it is calculated as

f=
K0
Re

(6)

a function of the Reynolds number

Re=

√
(p2 + q2)

�
(7)

and K0 a constant related to the characteristics of the ground surface [5], and � is the
kinematic viscosity of water. The kinematic viscosity of the sediment water mixture, �m,
is a function of the sediment concentration as

�m =
�m
�m

(8)

where �m is the density of the mixture, �m is the dynamic viscosity of the sediment water
mixture determined from an empirical equation [6]

�m =�(1 + 2:5Cv) (9)

and Cv is the sediment concentration by volume. For details on numerical methods used for
solutions of the overland �ow equations the reader is directed to the work of Fiedler and
Ram��rez [1].
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2.2. In�ltration

2.2.1. Governing equations. The governing equation for one-dimensional �ow of water in
soil can be written in the form

@
@zg

(
K( )

@ 
@zg

)
+

@K( )
@zg

=
@�( )
@t

(10)

a second-order cubic partial di�erential equation commonly referred to as the mixed form of
the Richards equation, where  is the soil water pressure head, �( ) is the soil volumetric
water content, K( ) is the hydraulic conductivity and zg denotes a length scale directed parallel
with the gravity vector. Two other common forms of Richards equation are the head- and the
theta-based forms in which all the gradients are of  and �, respectively. While each form of
Richards equation has been used extensively throughout the literature [7–9] the mixed form
has been chosen here because its numerical implementation has been shown to be perfectly
mass conservative and solutions based on the head- or theta-based forms generally yield poor
results speci�cally due to large mass balance errors [7]. Because of its complex non-linear
nature, there is no known general analytical solution to the Richards equation for water �ow
in an unsaturated soil column.

2.2.2. Numerical methods. Following the work of Celia et al. [7], a fully implicit �nite
di�erence scheme coupled with a simple one-step Euler time-marching algorithm is used here
to solve the mixed form of Richards equation. The solution uses the Picard method for the
iteration procedure of the linearized system of non-linear equations that result from discretizing
Richards equation. The backward Euler approximation of Equation (10) is

�n+1; m+1 − �n;m
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− @Kn+1; m
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=0 (11)

where superscripts n and m denote time and iteration level, respectively. The mass balance
accuracy of the numerical solution of the mixed form of Richards equation comes from the
expansion of �n+1; m+1 in a truncated Taylor series with respect to  , about the expansion
point  n+1; m

�n+1; m+1 = �n+1; m +
d�
d 

∣∣∣∣n+1; m ( n+1; m+1 −  n+1; m) +O[(�m)2] (12)

Substituting a �rst-order approximation of Equation (12) into Equation (11) and an iteration
increment �m=  n+1; m+1 −  n+1; m results in(
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where C=d�=d .
Equation (13) has been called the general mixed-form Picard approximation by Zarba [10].

Using �nite di�erences results in the �nal discrete form of the approximation [7]
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Equation (14) is appropriate for all interior nodes. Boundary conditions must be speci�ed at
i=0 and N − 1 where N is the number of nodes. Boundary conditions can be of two types,
either �xed head or �ux type. With �xed head boundary conditions there are N −2 equations
with N − 2 unknown values of �m. The form of these N − 2 equations is such that they can
be put into a matrix equation with a dominant tri-diagonal matrix⎡
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where Nn=N − 2, and from expanding Equation (14)
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Ri is a measure of the error associated with the current iteration level and approaches zero
along with all values of �m as the solution converges. This matrix system can be solved using
a LU decomposition technique; a speci�c solution can be found in Reference [11].
For a �ux boundary condition at i=0 there are N − 1 equations and N − 1 values of �m

where the interior nodes are described by Equation (4) and the boundary at i=0 is described
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by Darcy’s Law. This set of equations can be solved exactly as above where Nn=N − 1 and
a1 is described through Darcy’s Law.
In order to couple the above in�ltration model to the overland �ow equations, the solution

approach of Reference [7] requires two modi�cations. First, because of erosion and sediment
transport processes (presented below), ground surface elevations are not constant in general,
and, therefore the soil column is not generally static. Thus, new node vectors must be de�ned
at each time step. Rede�ning the node vector is accomplished by changing �zg while main-
taining the same number of nodes in each soil column. This is a source of error; however,
because the amount of erosion=deposition at a time step is much less than �zg, this error is
relatively small. The second modi�cation to the approach of Reference [7] incorporates the
ability to switch boundary conditions. When rainfall starts, the boundary condition is a �ux
type such that the �ux is equal to the rainfall rate plus the �ow onto each cell from adjacent
cells. When the head value in the uppermost node becomes greater than the saturated head,
ponding occurs and the boundary condition at that cell switches to a �xed head type with the
head equal to the saturated head value.

2.3. Sediment detachment and transport

2.3.1. Governing equations. Conservation of sediment for a three-dimensional control volume
gives

@Cs
@t
+

@q̂sx
@x

+
@q̂sy
@y

+
@̂qsz
@z

= Ċs (21)

where Cs is the spatially averaged sediment concentration, q̂sx ; q̂sy and q̂sz are the sediment
mass �uxes through the faces of the control volume in the x; y, and z directions, respectively,
and Ċs is the sink=source term as a rate of sediment per unit volume. Assuming that the
sediment concentration is gradually varied (i.e. @Cs=@t=0), Equation (21) reduces to

@q̂sx
@x

+
@q̂sy
@y

+
@̂qsz
@z

= Ċs (22)

The sediment mass �ux through each face includes advective �ux and both molecular and
turbulent di�usive �uxes, and can be written as

q̂sx =

advective
�ux︷︸︸︷
uCs −

di�usive and
mixing �ux︷ ︸︸ ︷

(D+ �x)
@Cs
@x

q̂sy = vCs − (D+ �y)
@Cs
@y

q̂sz =!Cs − (D+ �z)
@Cs
@z

(23)

The advective �ux describes the movement of sediment particles by velocity currents where
u; v, and ! in Equation (23) are the velocity of the sediment �ux in the x; y, and z directions,
respectively. The di�usive and mixing �uxes are directly proportional to the concentration
gradient and correspond to molecular di�usion (D) and to di�usion due to turbulent �uid
motion (�x; �y; �z). The negative sign in Equation (23) represents a mass �ux in the direction
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of decreasing concentration. Assuming that the di�usive and mixing �uxes are negligible
compared to advective �uxes and that settling velocity, !z, is the dominant advective �ux in
the z direction, Equation (22) can be written as

@uCs
@x

+
@vCs
@y

− @!zCs
@z

= Ċs (24)

For conditions where the sediment transport is capacity-limited (as opposed to supply-
limited), the sediment mass �uxes are equal to the sediment transport capacities of the �ow.
The unit sediment transport capacity in the x direction (and analogously for the other direc-
tions) is de�ned by

qsx = �[pS0x − (pS0)crit]� (25)

where Sox is the bed slope in the x direction of �ow and (pS0)crit is a minimum value below
which no sediment is transported. The parameter � is a measure of the erodability of the
sediment and the parameter exponent � is generally in the range 1.5–1.8 [12]. Assuming that
the sediment mass �ux is uniform in the vertical (@!zCs=@z=0), Equation (24) becomes

@qsx
@x

+
@qsy
@y

= Ċs (26)

The volumetric �ux rate of sediment either deposited to or eroded from the bed causes a
change in bed elevation and is

Ċs = − @
@t
[(1− po)z] (27)

where po is the bed porosity (fraction of bed volume that is pores rather than sediment).
In its current implementation the model utilizes only one size class of sediment and po is
determined by the speci�c weight of the sediment as

po = 1− 	md
	s

(28)

where 	md is the average dry speci�c weight of the water–sediment mixture, de�ned here
as the dry weight of sediment per unit total volume, and 	s is the speci�c weight of the
sediment [6]. Substituting (27) into (26) results in

−(1− po)
@z
@t
=

@qsx
@x

+
@qsy
@y

(29)

which can be rewritten in the form of the well known Exner equation

@z
@t
= − 1

(1− po)

(
@qsx
@x

+
@qsy
@y

)
(30)

This is the governing equation for bed elevation change as a function of changes in sediment
load.
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2.3.2. Numerical methods. The sediment detachment and transport equations are solved
using a �nite di�erence method, centred in space, forward in time. Because the coupling
of the erosion and sedimentation algorithm to the overland �ow equations can cause steep
gradients in �ow conditions and bed slope, which can lead to discretization errors, a simple
Gaussian low-pass �lter is applied to the bed elevation after each time the sediment de-
tachment and transport algorithm is implemented. The Gaussian distribution in 2-D for an
isotropic, zero mean variable with variance 
2 is given by

G(x; y)=
1√
2�
2

e−(x
2+y2)=2
2 (31)

The Gaussian �lter gives a ‘point-spread’ function where each cell’s new elevation is deter-
mined by its own value and the elevations of the cells within a neighbourhood of dimensions
speci�ed in the input. This �lter is applied to every cell in the domain to determine the bed
elevation values for the next time step. The variance of the distribution, 
2, is the relative
convolution weight in determining elevation values and it is assumed constant in the x and y
directions.

3. MODEL COMPONENT VERIFICATION

3.1. Overland �ow

The overland �ow component was extensively tested when originally presented by Fiedler
and Ram��rez [1] using the Green–Ampt in�ltration model. Internal validation was performed
testing the model with an analytical solution to a kinematic wave [13] as well as a dam break
problem [14, 15]. The reader is kindly referred to Fiedler and Ram��rez for details.

3.2. In�ltration

3.2.1. Numerical accuracy. To test the numerical accuracy of the in�ltration model imple-
mentation, model results are compared to a quasi-analytical solution of Richards equation for
the condition of a homogeneous soil column with a �xed head boundary condition presented
by Philip [16]. Results from only one simulation corresponding to a yolo light clay soil col-
umn are presented; the model produced similar accuracy during tests for other soil types. The
soil properties for the yolo light clay are de�ned as follows [17]:

Yolo light clay:

K( ) =Ks
A

A+ | |� ; Ks=4:428(10−2) cm=h; A=124:6; �=1:77

�( ) =

(�s − �r)


+ (ln | |)� + �r; �s=0:495; �r =0:124; 
=739; �=4
(32)

Figure 1 shows the comparison between the theoretical and analytical solutions. As can be
seen, the numerical solution of the Richards equation does an excellent job of simulating the
results of the quasi-analytical solution for this speci�c case of the distribution of water in the
soil column.
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Figure 1. Theoretical and analytical solution for in�ltration into yolo light clay.

3.2.2. Mass balance. The mass balance (MB) ratio is de�ned as the ratio of the total addi-
tional mass in the domain to the total net �ux into the domain, and is written as

MB=
∑E−1

i=1 (�
n+1
i − �0i )(�z)∑n+1

j=1

[
Kj

N−1=2

(
 j
N −  j

N−1
�z

+ 1

)
− Kj

1=2

(
 j
1 −  j

0

�z
+ 1

)]
(�t)

(33)

where N =E + 1 nodes {z0; z1; z2; : : : ; zE}, and constant nodal spacing �z is assumed.
In the numerical experiment as presented in Figure 1 the mass balance ratio is unity.

This is a result of the utilization of the mixed form of Richards equation and the numerical
implementation used here as it has been shown to be perfectly mass conservative [7].

3.3. Sediment detachment and transport

Since there is no known analytical solution to the coupled erosion and overland �ow equa-
tions being implemented here, it is impossible to perform an analytical veri�cation of this
component. However, an empirical test is feasible based on expected characteristics of sur-
face elevations, for example the longitudinal pro�le. This was done for a 10 m long plane
with initial longitudinal slope of 0.008 and constant rainfall rate of 105 mm=h and using
�x=�y=0:0625 m. The sediment transport parameters are set as �=50 and �=1:8 and
(pSox)crit = (qSoy)crit = 5(10−7) cm2=s. The diameter of the sediment particles is set to 0:12mm.
Figure 2 shows the temporal progression of the longitudinal pro�le of the landform to a

near equilibrium condition that is best described using an exponential function with a negative
exponent, a result that is consistent with expected longitudinal pro�les [18].
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Figure 2. Theoretical longitudinal pro�le development.

3.4. Physical=theoretical model comparison

A physical experiment was conducted in an experimental rainfall facility located at the
Hydraulics Laboratory at Colorado State University to test the theoretical model’s ability
to model an actual rainfall-runo� event. The experimental facility consists of a rainfall simu-
lator and a 1m× 0:5m partitioned section of an arti�cial hillslope [19] with a 5◦ slope angle.
The experiment subjected the hillslope to a mean rainfall rate of approximately 65 mm=h,
applied in two 25-min pulses separated by a 5-min time period of no rain. Measurements of
volumetric water �ux [L3=T] were made at intervals of 120 s. The hydraulic conductivity and
the water pressure head for the soil of the physical model are given by the van Genuchten
functions:

K( ) =KsS0:5e [1− (1− S1=fe )f]2 (34)

Se =
�( )− �r
�s − �r

=
1

[1 + |
 |w]f (35)

where f=1− 1=w. The values of �s, �r; Ks; 
 and w are best �ts to laboratory measurements
and obtained as, �s=0:42; �r =0:04; Ks=0:0004 cm=s; 
=0:0436 cm−1, and w=1:34.
The theoretical model is parameterized with the above van Genuchten functions and the ini-

tial soil moisture condition is assumed characterized by a soil matric potential  = − 10 cm
everywhere in the domain, a value consistent with the volumetric water content after 1 day of
drying [19] following a rainfall of 1 h duration. The model was discretized with �x=�y=
50mm and a time step of 0:02 s was utilized. The model was run continuously for a period
of 3600 s with a rainfall �eld distributed spatially to correspond to measurements from the
physical model [19]. A comparison of hydrographs can be seen in Figure 3. The theoretical
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Figure 3. Model veri�cation with physical experiment.

model reproduces very well the rising and falling limbs of the runo� response to both pulses
of rain. This is an advantage of implementing the Richards equation because using a di�erent
in�ltration equation such as Green–Ampt requires additional parameterization for a multi-storm
event [20]. The total volumetric runo� of the physical experiment and theoretical model are
18.4 and 17:4 l, respectively. This represents a 5.6% error. Large-scale oscillations, however,
which can be of the same order as the signal in the physical experiment, are not reproduced in
the theoretical model. During the physical experiment mass-wasting events dam the out�ow
until the water behind the dam becomes deep enough to over top the dam and move the
sediment. A pulsed out�ow is observed due to this dam and release process and can be seen
in the physical results. There is no mass-wasting mechanism implemented in the theoretical
model and therefore this pulsed out�ow type of event cannot be reproduced exactly.

4. SAMPLE SIMULATIONS

4.1. Initial conditions

One of the advantages of the mathematical model developed and implemented here is that
physical characteristics of the hillslope may be explicitly de�ned at each grid cell, namely
rainfall rates, elevation, soil in�ltration characteristics (e.g. saturated hydraulic conductivity),
soil erodability, etc. In order to study how the governing equations control hillslope evo-
lution with respect to energy expenditure, initial soil moisture distribution and erodability
are assumed constant throughout the domain. The hillslope is initially completely smooth.
Variability into the system is introduced by spatially variable rainfall rate. Two experiments
are presented; the �rst two-dimensional test (DD1) has cell dimensions �x=�y=6:25 mm
and the second (DD3) has cell dimensions �x=�y=3:125 mm. Domain size for the two
simulations is 3 m× 10 m.
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Model parameters are set to resemble those of the physical model in the experimental
rainfall facility. A grain size of 0:12mm is selected to correspond with median grain size of the
physical model [19]. Initial slope angle is 9◦. The sediment transport capacity is parameterized
as to allow for rapid sediment transport: �=50; �=1:8; (pSox)crit = (qSoy)crit = 5(10−7) cm2=s.
Model stability requires that a time step be selected such that the Courant condition is met
and that the change in elevation at a cell at any time step is not greater than 5% of the �ow
depth. Time steps are 10−3 s.
A summary of the two simulations is presented in Table I. Experiment DD1 corresponds to a

self-similar distribution of rainfall rates with mean and variance of 85mm=h and 496 (mm=h)2,
respectively. The distribution of rainfall rates corresponds to a power function semi-variogram
(g= ar�) where g is half the variance between points located distance r apart. For this
distribution a is set to 1 and � is set to 1.5, which yields a fractal dimension of 2.25
(Figure 4). Experiment DD3 corresponds to a Gaussian rainfall distribution whose mean and
variance are 59 mm=h and 25 (mm=h)2, respectively, and whose correlation length scales are
600 mm in the x-direction and 800 mm in the y-direction (Figure 5).

Table I. Theoretical model simulation characteristics.

Standard
Mean deviation Rainfall

Experiment ID rainfall rate mm=h rainfall rate �x; �y mm Nx;Ny distribution

DD1 85 22 6.25; 6.25 48; 160 Self-similar Figure 4
DD3 59 5 3.125; 3.125 96; 320 Gaussian Figure 5

Figure 4. Self-similar rainfall rate distribution for simulation DD1.
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Figure 5. Gaussian rainfall rate distribution for simulation DD3.

As with all numerical solutions of hyperbolic partial di�erential equations, these solutions
are prone to numerical oscillations. In addition, the implementation of the erosion and sediment
transport component can also cause oscillations in the solution. Experimentally, it was found
that these oscillations are best controlled through Gaussian smoothing (Section 2.3.2), and
through adjustments of the grid size and time steps. In particular, a time step adjustment
proved to be very successful. Operating the erosion algorithm at a time step, �te¿3�to
(where �to is the time step for overland �ow algorithm) provides stability under applications
tested during the experiments described in this manuscript.

4.2. Two-dimensional simulation results

Results from two-dimensional simulations of an initially smooth slope subject to spatially
variable rainfall rates are very complex. The scales at which the system is in adjustment
vary in both space and time. Some sample �ow domain plots are shown in Figures 6 and 7.
Under the initial and boundary conditions speci�ed for these two examples (see Table I),
it is clear that the down slope component of discharge is initially dominant in both cases;
however, with time, the cross-slope component of discharge can become of equal magnitude
(Figures 6 and 7).
Examinations of the energy expenditure characteristics of the simulated �ow domains show

evidence of two-dimensional self-organization with time. The energy expenditure character-
istics analysed are: cell-based global energy expenditure, coe�cient of variation of energy
expenditure, total stream power and unit stream power and are de�ned below.
Unit stream power is de�ned as [21]

�= vS (36)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1193–1212



1206 D. A. RAFF AND J. A. RAM�IREZ

Figure 6. Sample �ow domain (DD1): (a) Time = 3001 s; (b) Time = 210 000 s.
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Figure 7. Sample �ow domain (DD3): (a) Time = 402 s; (b) Time = 7598 s.

where v is velocity, and S is slope. Application of the concept of unit stream power to these
simulations where the �ow domain may be continuous across the entire hillslope requires unit
stream power at a point i; j to be de�ned as

�i; j= vi; jSi; j (37)
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and the total unit stream power in the system as

�T =
Nx∑
i=1

Ny∑
j=1

vi; jSi; j (38)

where i∈ (1:Nx) and j ∈ (1:Ny) and Nx and Ny are the number of grid cells in the x and y
directions, respectively. Stream power per unit length is de�ned as [22]

�= 	QS (39)

Again de�ned here for a continuous domain, stream power at a point i; j is

�i; j= 	mi; jQi; jSi; j (40)

where 	mi; j is the speci�c weight of the sediment water mixture and can be calculated as

	mi; j= 	(1 + Cv(G − 1)) (41)

where G is the speci�c gravity of the sediment and Cv is the concentration of sediment by
volume. Here, for simplicity in calculations, it is assumed that 	mi; j is a constant in space and
time. The total stream power in the system is thus

�T = 	
Nx∑
i=1

Ny∑
j=1

Qi; jSi; j (42)

Making similar arguments when developing characterization of global and local energy
expenditure for a continuous �ow domain transporting sediment, the global rate of energy
expenditure of the �ow domain is calculated here as

PT =
Nx∑
i

Ny∑
j
Qi; jSi; jLi; j (43)

where Li; j is the length of the cell in the direction of �ow. The local rate of energy expenditure
per unit �ow area is computed at each cell as

Pl =
QS

2h+ dx
(44)

where h is �ow depth at that cell and dx is the cell dimension along the direction of �ow.
Equation (44) assumes that the �ow is directed in the x direction, but analogous equations
may be written regardless of the direction of �ow. The coe�cient of variation of Pl across
the entire domain is computed as

CVPl =

Pl

�Pl
(45)

where 
Pl and �Pl are the standard deviation and mean of Pl across the entire �ow domain,
respectively.
In natural drainage systems, observations indicate that the local terrain slope at a point,

S, is related to the �ow discharge passing through that point, Q, by a power law of the
form S ∝Q−z [23–25]; furthermore, for so-called optimal channel networks, it can be shown
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that z=0:5 [25, 26]. Figure 8 shows the simulated slope-discharge relationship at the end of
the DD1 simulation. Within Figure 8, the line in yellow is proportional to Q−0:5 and the
proportionality factor is selected to �t the data with a minimum sum of square errors. The
R2 value of the �t is 0.48. The thresholds indicated in Figure 8 are used to de�ne areas
of concentrated �ow for energy expenditure analyses. The higher threshold corresponds to
areas where water �uxes and elevation changes are approaching dynamic stability at the end
of simulation (as evidenced by slope of the S vs Q relationship approaching optimality)
and the lower threshold to areas still in active adjustment. Results of the energy expenditure
analysis are presented for DD1 only, similar results were obtained for DD3. Physically, global
energy expenditure decreases within the system as a function of time. Energy expenditure as
a result of the distributed erosional work being done throughout the domain decreases slope
overall (@z=@t¡0). This can be seen by the generally decreasing trend in total stream power
and global energy expenditure (Figure 9). The amount of work that can be done in any
given time interval is related exponentially to the discharge and slope during that time. Thus,
di�erent areas are varying at di�erent rates as can be seen in the plots of the CVPl as function
of the local slope and local discharge (Figure 9), the implication being that networks not in
equilibrium do not always have trends in local energy expenditure approaching optimality.
The trends of local and global energy expenditure for areas approaching equilibrium resemble
those that have been discussed in the literature for optimal channel networks (OCNs) which
have been shown to result from models of self-organization [26].

Figure 8. DD1 slope–discharge relationship. Data points are raw slope vs discharge. Line is S ∝Q−0:5.
Vertical lines are thresholds corresponding to Figure 9.
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Figure 9. Energy characteristics (DD1): (a) threshold at Q=0:2 [cm3=s]; and
(b) threshold at Q=1:0 [cm3=s].
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Throughout these two-dimensional simulations, spatially heterogeneous �ows develop with
time and possess the characteristics expected of two-dimensional overland �ow systems. Using
the elevation matrix as a digital elevation model (not shown) and de�ning a network of
micro-channels as all cells draining an upstream contributing area that exceeds a threshold,
the simulations produce a network of channels that resembles networks observed in physical
experiments [19].
Physical experiments conducted on arti�cial hillslopes, as described in Reference [19], de-

velop equilibrium rill networks often in less than 5 h, but the time required for these rill
networks to develop depends on the hillslope-scale slope. Qualitatively, the rates of develop-
ment of the numerical model lag well behind the rates observed in the physical experiment.
One possible explanation for this time lag of channel development is a lack of mass wasting
mechanisms within the model for channel initiation and elongation. Mass wasting, speci�cally
shallow landsliding, causes abrupt variations in the �ow domain and topography (nick points)
and leads to active rill development through upslope migration of the rill heads as observed
during physical experiments and noted in the literature [27]. Also, distributions in soil in�l-
tration characteristics as well as erodability, along with the distribution of rainfall on a much
more discrete spatial domain, should add increased variability into the system and encourage
two-dimensional heterogeneity. These simulations are computationally expensive and are the
subject of ongoing research.

5. CONCLUDING REMARKS

This paper presents the mathematical development of a distributed, physically based, mech-
anistic hillslope hydrology model. The model consists of three components, each of which
performs accurately when compared to known analytical solutions. The implementation of
this model utilizes the most stable and accurate approaches developed for each algorithm
individually, and implements some new stability controls on the coupled algorithm as a
whole.
Two examples are presented to assess the ability of the model to capture interactions

between overland �ow, in�ltration, and erosion and sediment transport. These examples show
how the spatial distribution of rainfall rates, which leads to spatially distributed ponding time
and overland �ow depths and velocities, interacts with hillslope development and spatially
distributed erosion. The model yields a description of hillslope evolution as well as �ow and
erosion rates under conditions where there are no mass wasting processes. An analysis of the
energy expenditure characteristics of the �ow indicates that this system of equations leads
towards two-dimensional self-organization.
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